Transcription factor Sp1 plays an important role in the regulation of copper homeostasis in mammalian cells.
نویسندگان
چکیده
Copper is an essential metal nutrient, yet copper overload is toxic. Here, we report that human copper transporter (hCtr) 1 plays an important role in the maintenance of copper homeostasis by demonstrating that expression of hCtr1 mRNA was up-regulated under copper-depleted conditions and down-regulated under copper-replete conditions. Overexpression of full-length hCtr1 by transfection with a recombinant hCtr1 cDNA clone reduced endogenous hCtr1 mRNA levels, whereas overexpression of N terminus-deleted hCtr1 did not change endogenous hCtr1 mRNA levels, suggesting that increased functional hCtr1 transporter, which leads to increased intracellular copper content, down-regulates the endogenous hCtr1 mRNA. A luciferase assay using reporter constructs containing the hCtr1 promoter sequences revealed that three Sp1 binding sites are involved in the basal and copper concentration-dependent regulation of hCtr1 expression. Modulation of Sp1 levels affected the expression of hCtr1. We further demonstrated that the zinc-finger domain of Sp1 functions as a sensor of copper that regulates hCtr1 up and down in response to copper concentration variations. Our results demonstrate that mammalian copper homeostasis is maintained at the hCtr1 mRNA level, which is regulated by the Sp1 transcription factor.
منابع مشابه
Specificity protein 1 (sp1) oscillation is involved in copper homeostasis maintenance by regulating human high-affinity copper transporter 1 expression.
Copper is an essential micronutrient for cell growth but is toxic in excess. Copper transporter (Ctr1) plays an important role in regulating adequate copper levels in mammalian cells. We have shown previously that expression of the human high-affinity copper transporter (hCtr1) was transcriptionally up-regulated under copper-depleted conditions and down-regulated under replete conditions; moreo...
متن کاملRole of the human high-affinity copper transporter in copper homeostasis regulation and cisplatin sensitivity in cancer chemotherapy.
The high-affinity copper transporter (Ctr1; SCLC31A1) plays an important role in regulating copper homeostasis because copper is an essential micronutrient and copper deficiency is detrimental to many important cellular functions, but excess copper is toxic. Recent research has revealed that human copper homeostasis is tightly controlled by interregulatory circuitry involving copper, Sp1, and h...
متن کاملTranscription factors Sp1 and Hif2α mediate induction of the copper-transporting ATPase (Atp7a) gene in intestinal epithelial cells during hypoxia.
Genes with G/C-rich promoters were up-regulated in the duodenal epithelium of iron-deficient rats including those encoding iron (e.g. Dmt1 and Dcytb) and copper (e.g. Atp7a and Mt1) metabolism-related proteins. It was shown previously that an intestinal copper transporter (Atp7a) was co-regulated with iron transport-related genes by a hypoxia-inducible transcription factor, Hif2α. In the curren...
متن کاملMapping of Transcription Factor Binding Region of Kappa Casein (CSN3) Gene in Iranian Bacterianus and Dromedaries Camels
κ-casein is a glycosilated protein in mammalian milk that plays an essential role in the milk micelles. Control of κ-casein expression reflects this essential role, although an understanding of the mechanisms involved lags behind that of the other milk protein genes. Transcriptional regulation, a first mechanism for controlling the development of organisms, is carried out by transcription facto...
متن کاملMapping of Transcription Factor Binding Region of Kappa Casein (CSN3) Gene in Iranian Bacterianus and Dromedaries Camels
κ-casein is a glycosilated protein in mammalian milk that plays an essential role in the milk micelles. Control of κ-casein expression reflects this essential role, although an understanding of the mechanisms involved lags behind that of the other milk protein genes. Transcriptional regulation, a first mechanism for controlling the development of organisms, is carried out by transcription facto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular pharmacology
دوره 74 3 شماره
صفحات -
تاریخ انتشار 2008